On Worst-case Gmres, Ideal Gmres, and the Polynomial Numerical Hull of a Jordan Block
نویسندگان
چکیده
When solving a linear algebraic system Ax = b with GMRES, the relative residual norm at each step is bounded from above by the so-called ideal GMRES approximation. This worstcase bound is sharp (i.e. it is attainable by the relative GMRES residual norm) in case of a normal matrix A, but it need not characterize the worst-case GMRES behavior if A is nonnormal. Characterizing the tightness of this bound for nonnormal matrices A represents an important and largely open problem in the convergence analysis of Krylov subspace methods. In this paper we address this problem in case A is a single Jordan block. We study the relation between ideal and worst-case GMRES as well as the problem of estimating the ideal GMRES approximation. Furthermore, we prove new results about the radii of the polynomial numerical hulls of Jordan blocks. Using these, we discuss the closeness of the lower bound on the ideal GMRES approximation that is derived from the radius of the polynomial numerical hull.
منابع مشابه
Gmres Convergence and the Polynomial Numerical Hull for a Jordan Block
Consider a system of linear algebraic equations with a nonsingular n by n matrix A. When solving this system with GMRES, the relative residual norm at the step k is bounded from above by the so called ideal GMRES approximation. This bound is sharp (it is attainable by the relative GMRES residual norm) in case of a normal matrix A, but it need not characterize the worstcase GMRES behavior if A i...
متن کاملWorst-case and ideal GMRES for a Jordan block ⋆
We investigate the convergence of GMRES for an n by n Jordan block J . For each k that divides n we derive the exact form of the kth ideal GMRES polynomial and prove the equality max ‖v‖=1 min p∈πk ‖p(J)v‖ = min p∈πk max ‖v‖=1 ‖p(J)v‖, where πk denotes the set of polynomials of degree at most k and with value one at the origin, and ‖ · ‖ denotes the Euclidean norm. In other words, we show that ...
متن کاملProperties of Worst-Case GMRES
In the convergence analysis of the GMRES method for a given matrix A, one quantity of interest is the largest possible residual norm that can be attained, at a given iteration step k, over all unit norm initial vectors. This quantity is called the worst-case GMRES residual norm for A and k. We show that the worst case behavior of GMRES for the matrices A and A is the same, and we analyze proper...
متن کاملConvergence analysis of the global FOM and GMRES methods for solving matrix equations $AXB=C$ with SPD coefficients
In this paper, we study convergence behavior of the global FOM (Gl-FOM) and global GMRES (Gl-GMRES) methods for solving the matrix equation $AXB=C$ where $A$ and $B$ are symmetric positive definite (SPD). We present some new theoretical results of these methods such as computable exact expressions and upper bounds for the norm of the error and residual. In particular, the obtained upper...
متن کاملThe worst-case GMRES for normal matrices
We study the convergence of GMRES for linear algebraic systems with normal matrices. In particular, we explore the standard bound based on a min-max approximation problem on the discrete set of the matrix eigenvalues. This bound is sharp, i.e. it is attainable by the GMRES residual norm. The question is how to evaluate or estimate the standard bound, and if it is possible to characterize the GM...
متن کامل